In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells
نویسندگان
چکیده
Organic/inorganic hybrid solar cells have great potentials to revolutionize solar cells, but their use has been limited by inefficient electron/hole transfer due to the presence of long aliphatic ligands and unsatisfying continuous interpenetrating networks. To solve this problem, herein, we have developed a one-pot route for in situ synthesis of poly(3-hexylthiophene) (P3HT)-capped CdSe superstructures, in which P3HT acts directly as the ligands. These CdSe superstructures are in fact constructed from numerous CdSe nanoparticles. The presence of P3HT ligands has no obvious adverse effects on the morphologies and phases of CdSe superstructures. Importantly, higher content of P3HT ligands results in stronger photoabsorption and fluorescent intensity of CdSe superstructure samples. Subsequently, P3HT-capped CdSe superstructures prepared with 50 mg P3HT were used as a model material to fabricate the solar cell with a structure of PEDOT:PSS/P3HT-capped CdSe superstructures: P3HT/Al. This cell gives a power conversion efficiency of 1.32%.
منابع مشابه
In-situ growth of CdSe-P3HT nanocomposites
Introduction CdSe-P3HT (poly(3-hexylthiophene))) nanocomposites are studied for their application in hybrid solar cells. Semiconductor inorganic/organic hybrid solar cells offer many advantages relative to their non-hybrid counterparts. They have the advantages of conjugated polymers such as light weight, flexibility, abundance of resources, the potential for roll-to-roll and non-vacuum process...
متن کاملSILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملمطالعه رسانایی جریان مستقیم لایههای نازک P3HT آلاییده با نانو ذرات ZnS و Ag
Interest in the P3HT: ZnS nanocomposites are increased due to their applicability as an active layer for bulk heterojunction solar cells of high open circuit voltage and charge transport in this type of solar cells determines their performance. So the study of the conduction mechanism of the P3HT:ZnS nanocomposites is significant to improve the efficiency of such solar cells, and this paper dis...
متن کاملGreen growth of CdSe nanostructures for application in Schottky type solar cell
CdSe nanostructures were synthesized by using green chemical route as starch was used as capping agent. XRD, HR-TEM, SEAD, UV and PL studies were made for structural and optical properties of the prepared sample. Film morphology and the thickness measurement of n-CdSe were carried out with AFM analysis. I-V characteristics curve of this junction confirmed the formation of Schottky contact betwe...
متن کاملGreen growth of CdSe nanostructures for application in Schottky type solar cell
CdSe nanostructures were synthesized by using green chemical route as starch was used as capping agent. XRD, HR-TEM, SEAD, UV and PL studies were made for structural and optical properties of the prepared sample. Film morphology and the thickness measurement of n-CdSe were carried out with AFM analysis. I-V characteristics curve of this junction confirmed the formation of Schottky contact betwe...
متن کامل